Digital File Capture Protocol from Disk Image, Version 1

INF 392K, Problems in the Permanent Retention of Ditigal Records, Spring 2010

Goals to be achieved:

· Creation of “order as received” collection from each media unit

· Nondestructive capture of disk image (which can then be treated as a virtual disk) of original media

· Securing/preserving original media

· Establishment of fixity information for original media and derived disk image (MD5)

· Establishment of structural metadata for disk image

· Protecting established privacy concerns based on donor agreement and law

· Non-destructive extraction of overt files from disk image (“digital replicates”)

· Establishment of fixity data for extracted overt files

· Harvesting of intrinsic metadata from overt files, establishment of file formats
· Creation of any required use copies from overt files (“digital facsimiles”)

Note: For the time being, the archive will not make an attempt at analysis of media images in order to extract covert files or file fragments, but only to reveal the fact of their existence

Means of achieving these goals:
· Write-blocking original media before processing on appropriate drive

· Processing original media on original drive under Linux

· Establish fixity metadata (message digest) for content of original media (md5sum)

· Use standard disk-imaging software (dd) to make image of original media on Linux drive, calculate and check fixity metadata for disk image
· Ejecting and storing original media after disk image is extracted to Linux drive

· Making clean copy of disk image on new media in target drive, confirm fixity metadata
· Analyzing contents of disk image in target drive using standard software (disktype, file) to define the original filesystem

· Analyzing contents of disk image in target drive using standard software (file) to get a listing of the overt files in the disk image

· Extracting only overt files from disk image, establishing fixity metadata
· Virus-checking extracted files where possible

Machine environments available:

Digital Archaeology Lab:

“Clean-room” machine:

Dell Optiplex

has no OS on it at the moment

KNOPPIX can be booted from CD to provide dd, disktype, md5sum, file

Also has ZIP drive

Native-environment machine:

Win 3.1 tower PC: has 3.5” and 5.25” floppy drives

Goodwill Computer Museum
“Legacy Format Capture Machine”

Linux segment: has dd, disktype, file, md5sum

Native-environment segments: DOS, Win 3.1

GCM Legacy Format Capture Machine operation, for processing hard drives and 3.5” and 5.25” diskettes, PC origin

Note on file naming: For each media unit, you are going to be creating a set of files that are all related. Under the notion of “order as received,” this set will consist of the following:

· disk image file

· message digest file for disk image
· file documenting the file system and other aspects of the disk image

· overt content files extracted from the disk image

· use copy files derived from the content files

Note that in order to support batch ingest into DSpace, as well as to reduce confusion and keep these files together, it is necessary to be concerned with the details of file naming. To begin with, it is necessary to create under Linux a directory to contain all the files in each set. This directory should be given a name that reflects the label(s) found on the physical media so as to make it easy to match the filename to the media. The label(s) will be documented as well using a photographic image, so don’t be concerned if the label name seems too long and involved and you can’t use the whole thing. Although we have become accustomed to neverending filenames, the fact is that they can’t be neverending (most modern systems limit filename length to 255 characters). Earlier systems were relatively strict on filename length (e.g., 8 characters filename + 3 characters file extension), and even on Windows, when you access files at the DOS level you will see that they have been shortened drastically and cannot be accessed using what may seem to be a nice long text visible inside Windows (which keeps this as a piece of metadata to humor the user).

The derivative files relating to the disk (image, checksum, etc.) should also bear a name related to the disk label. The content files from the disk and the use copy files derived from them, however, should reflect the filenames that the content files actually bear in the native environment and should obey the appropriate length rules for that environment; any use copy files should have the same basename as that of the file from which they are derived but a different appropriate extension. For details on file naming and filename length in different environments, see the Wikipedia article: http://en.wikipedia.org/wiki/Filename
Disk image capture and file extraction procedures, GCM Machine

When you turn on the machine, the default environment is:

1) Linux operating system (most activity is carried out in this “clean-room” environment); note that Linux will boot up into a command-line environment (“terminal”) in which you will have to use Linux commands, detailed below.(These commands are powerful and have a lot of other parameters than you will use or want to know about, so don’t make a typo!)

2) 3.5” diskette drive (to change to 5.25” diskette drive, changethe physical connection before starting). Whichever drive is connected will become the target drive.

Step 1: Write-protect and insert the target disk and calculate message digest on it (unique number derived from contents of the disk)

· In the home directory where you are placed by default in the UNIX terminal, create a subdirectory to contain the files you will create from the target disk. Move into this subdirectory to run the extraction procedures so that the files you extract will automatically be placed in the appropriate directory.

· Write-protect the diskette.

· Insert the floppy diskette into the target drive.

· Use the program md5sum to calculate the message digest (or checksum) over the entire contents of the disk in the target deive. The command takes the form:

· md5sum space devicepath space > space resultfilename

· md5sum /dev/fd0 > [checksum file name].md5

· This command creates a file (resultfilename, which indicates a filename that is derived from the label(s) found on the physical media) that stores the result of the message digest calculation. The result, an output of numeric characters, is referred to as a “checksum.”

· Note also that the fd0 portion of this command is variable, and depends on which drive you run the message digest on.
********** list of allowed device paths?************************

Step 2: Create a disk image of the media by running the dd program, while in Linux

· In the UNIX terminal and the subdirectory for the target disk, run this command:

dd of=[disk image filename].image if=/dev/fd0 conv=notrunc
· This command creates and names the disk image file. Name this disk image in the same manner as the checksum file, so that the two bear identical file names but different file extensions.
· The fd0 portion of the this command is also variable, and depends on the drive from which the disk image is being derived.
· Note “of” means “output file” and “if” means “input file,” so don’t get them mixed up. Be sure to follow the above command syntax exactly. The dd program is very powerful, and can do irreversible damage if applied incorrectly. Note that this order of outpot before input is different from the order in more familiar copy commands.
· If you receive dd errors or aberrant results, create a text file named like the checksum and disk image files with the extension “.dderrors” and copy and paste the errors or aberrant results into the file to document that the media is corrupt/unreadable .
*****couldn’t you pipe error messages out to a file automatically by capturing stderr ?*****

· If you receive the following error message from the dd command:
dd: reading `/dev/fd0': Input/output error

0+0 records in

0+0 records out

0 bytes (0 B) copied, 25.4385 s, 0.0 kB/s

then there is no need to continue working with the media. Mark the disk as corrupt by (temporarily) pasting this error message preceded by the name of the media into a file called “fatalerrors” and affixing a sticky note temporarily to the corrupt media (after all media have been checked, print the fatal error messages and attach them to the relevant corrupt media). Only do this if you receive the “0+0 records in // 0+0 records out // 0 byes (0 B) copied” error message. If any records at all passed in or out or any bytes were copied (i.e., if a disk image was created), then proceed with the rest of the next step, and continue with the rest of the steps.

· Run a message digest (see Step 1) on the disk image you have created. Name the checksum file the same as the original media’s checksum file name, with the characters “_image” appended to the base filename. Once you have created the message digest of the image, run this command: diff [original media checksum file].md5 [disk image checksum file].md5. The diff program will give you a comparison of the two checksums, and will reveal if there have been any changes between the original and working copies.
Step 3: Copy disk image to blank media by running the dd program, while in Linux

· Eject the original media, and insert blank media into the same drive. The point of this step is to provide a clone of the disk image that can be manipulated for analysis without danger of damaging the image.

· In the UNIX terminal, move into the directory where the disk image is stored, and copy the image to the blank media by running the following command: dd if=[disk image file name].image of=/dev/fd0
· Note that the file order in the commands for Steps 2 and 3 are reversed. Just remember that “if” means “input file” and “of” means “output file”; here you are writing the disk image from the Linux hard drive to a blank floppy. If you get it backwards, you will erase the image you have just made.

· Run a message digest on the working copy media (see Step 1). Name the checksum file the same as the original media’s checksum file name, with the characters “_wrk” appended. Once the message digest is complete, run this command: diff [original media checksum file].md5 [working media checksum file].md5. This will give you a comparison of the two checksums, and will reveal if there have been any changes between the original and working copies.

· Eject the newly created copy media (the “working copy”), and label it with the same label used on the original media except for the addition of the words “Working Copy” at the bottom of the label.

Step 4: Mount the working copy media

· After labeling the working copy, re-insert into the appropriate drive.

· In the Unix terminal, run the following command: mount /dev/fd0 /mnt/floppy
· The media is now mounted, and can be worked on. Note that the fd0 and floppy portions of this command are variable, and depend on which drive you are mounting and where you are mounting to.

Step 5: Run the disktype program on the working copy, while in Linux

· In the UNIX terminal, run this command: disktype /dev/fd0 | tee –a [disktype info text file name]
· Name the text file in accordance previous naming practice associated with the media (see Steps 1 and 2), and append the characters “_disktype”.

· The information written by disktype to the text file will document the media’s file system (e.g., FAT if PC, HFS if Mac) boot codes, and volume size/name. After the program has finished running, go to the text file and affix a heading indicating the program (disktype) used to gather the information.

· The disktype information will be helpful later when attempting to determine the media’s (and the files within the media) native OS environment.

· If the media is corrupt, and disktype returns an error (i.e. “Data read failed at point 0”), continue to the next step anyway. Copy and paste such error messages into a new text file, because disktype does not write to the text file when errors occur.

Step 6: Run the file program on the working copy, while in Linux

· In the UNIX terminal, run this command: file/mnt/floppy/* | tee –a [file info text file name]
· Note that the floppy portion of this command is variable and depends on which drive the media has been mounted from.

· Name the text file according to previous naming schemes associated with the media (see Steps 1, 2, and 5), with the following characters appended “_fileinfo”

· If this command returns any results of “directory”, you must run the command again to open up the next level of files, with this slight change: file/mnt/floppy/[directory name]/* | tee –a [file info text file name] Note that pre-dos and early dos floppies are unlikely to have directories because the system did not provide for them.
· When directories do exist on the media, please go back into the text file and arrange the directory contents directly below the directory name, to illustrate the hierarchical structure of the media.

Step 7: Run the fls (FAT) or hmount (HFS) program on the working copy, while in Linux

· If you are working with media that employs a FAT file system (see the results of Step 5), run this command in the UNIX terminal: fls –rl /dev/fd0 /mnt/floppy | tee –a [fls info text file name]
· If you are working with media that employs an HFS file system (see the results of Step 5), run this command in the UNIX terminal: hmount /dev/fd0 /mnt/floppy | tee –a [hmount info text file name]

· Name the text file according to previous naming schemes associated with the media (see Steps 1, 2, 5, and 6), with the following characters appended “_fatinfo" or “_hfsinfo” as appropriate.
Step 8: Capture individual files from the disk image clone

· Copy any open-standard format files that you find on the disk into the directory in the Linux directory structure reserved for this media unit (in the same place where you have saved the disk images and metadata)
· If there are any source code files (with file extensions that include, but are not limited to, .c, .h, .inc, .bnk), be sure to maintain the directory structure represented in the media (note this concern applies especially to videogame materials, whose file structure may have functional importance).
· If possible, create any necessary access copies of files by making a copy in a contemporary, non-proprietary, open standard format, while in Linux
Step 9: Unmount the working copy

· In the UNIX terminal, run this command: umount /dev/fd0 /mnt/floppy
· Note that the fd0 and floppy portions of this command are variable, and depend on the drive the media has been mounted from.

· Eject the working copy media, and return it to its appropriate physical storage location.

Step 10: Create a “profile” of the media by inputting the metadata into the Media Profile Form

· Name the profile with the following convention: “dmp_[media_label_abbreviated]_[date_if_provided_on_label].doc”, and save the profile in a folder on your computer reserved for such profiles. (It is recommended that you organize this folder by collection as well).

· The profile will serve as a ready reference while conducting further processing in the media’s native environment, and therefore works best printed out. Bear this in mind when filling out the form.

· When describing the date range for the media, be sure to use the archival convention of indicating how the dates are distributed
· Note which files may require further processing in their native OS/software environment:

· Program files (executables, .exe) which may prove useful for access to related files (but which may be dangerous if you don’t know what they do)
· Zipped/compressed files which could not be investigated using the UNIX metadata-extractors

· Files with unknown/unrecognized file formats

· File extensions that do not require a closer look (unless you suspect compelling content):

· System/Disk Files: .bat, .bin, .dat, .frk, .fol…, or any file that begins with an underscore (such as “_upp.rsp”)

· Already Open/Standard Formats: .txt, .tiff, .mid, .wav

· Installation Files, found on disks which are meant to install a piece of software on your computer, rather than acting as a data carrier

Step 11: Ingest the disk image, copied files (if any), and associated metadata into DSpace

· Submit the disk image as a “New Item” in the appropriate collection. You may need to consult the DBCAH Digital Archivist in order to create a new collection, if that’s necessary.

· Using the UNIX tar command, bundle the 2 checksum files (1 for the original media, and 1 for the disk image), “_dderrors” file, “_disktype” file, “_fileinfo” file, and “fatinfo” or “hfsinfo” file into one file. Name this new .tar file in accordance with the disk image file name, with the characters “_metadata” appended. This should give you 5 to 6 files within the “_metadata.tar” file, depending on whether you have both a “_dderrors” file and a “_disktype” file or not.

· Take a digital photograph of the media, and upload it to the New Item’s page.

· Note the checksum created by DSpace for the disk image, and make sure it is identical to the checksum created for the disk image while in UNIX.

· Add descriptive metadata, within DSpace, to the “item” during the ingest process.

**

[As of 10/1/09, the first 8 steps only apply to 3.5” floppies, hard drives, CDs and late-period 5.25” floppies (post DOS 5.0) that can be accommodated on the machine and with the operating systems presently available. For earlier systems, it may still be necessary to carry out file copying on original hardware or in an emulated environment where system emulators and file-format readers are available.]

**

Step 10: Identify the operating system (OS) and software in which the media’s files were originally created

· Approximate the native OS and software environments of the media using dates written on the media, the metadata obtained from disktype, file*, and fls or hmount (see Steps 5, 6 and 7), and other context clues

· Consult the media creator’s computing biography

· Boot the native OS and open the native software in preparation for working directly with the media’s files.

Step 11: Review the media’s files and copy files designated for further processing to the native OS hard drive

· Insert the working copy of the media into the appropriate drive

· Locate the contents of the drive in the OS’s file manager GUI (such as Windows Explorer in Windows)

· Revisit any files with “unknown” file formats and open these files in a hex editor to determine (or attempt to do so) the file format through the file’s header information. It’s important to remember that file extensions can sometimes be misleading, and that supposedly “unknown” file extensions can turn out to be concealing ubiquitous file formats. ---- [can this be done in UNIX??? If so, move this bullet point and the following two points to a New Step after Step 8]
· Note which file formats are proprietary, and which file formats are open standard. There are a few cases where these conditions are not mutually exclusive, but usually they are

· FileInfo.com is a good resource for determining if a format is proprietary, but will usually not say if the format has an open standard

· Copy disk contents to the native OS hard drive. After copying the files from the media, make sure the copied files’ metadata, such as “Date Created” and “Date Last Modified”, remain the same as the metadata of files on the original media.

Step 13: Scan media for viruses

Step X: Uncompress (unzip) any compressed files

Step 14: Open each file designated for further processing

· While consulting the completed Media Profile Form, open each file with the software with which it was originally created.

· Sometimes the metadata extracted through UNIX and file extensions can be misleading, so merely note in the Media Profile when a file cannot be opened, rather than completely abandoning the file. There may be another way to open it, and the file should be ingested into DSpace regardless.

· Again, FileInfo.com often provides clues helpful for determining whether a given file extension actually represents the file format of the file in question

· As you open each file, refer back to the Media Profile. If a file is in a proprietary file format, save a copy of the file (if possible in the operating system/software environment you find yourself in) in a non-proprietary/open standard file format as an access copy. Give the access copy file the same name as the original file, with the characters “_access” appended.

· Here is a list of such file formats suitable for access copies:

· Text: odt./.ods/.odp ; .txt ; .rtf ; .pdf ; .xml

· Images: .tiff, .jpg, .jp2

· Audio: .wav, .aif

· Video: .avi, .mj2, mjp2

· Email: .mbox

· Databases: .odb

· Note in the Media Profile Form the exact combination of OS/software/software version used to open each file format

· Close the files. Be sure to avoid making any changes or edits to the files while they’re opened. If the program asks you if you’d like to save changes to the file when closing the file, JUST SAY NO! even if you haven’t made any changes. (Clicking YES will alter the file’s “Last Modified” Date, and therefore will compromise the integrity of the metadata attached to the file).

Step 15: Burn the copied original files and access copies to the “universally-supported” media drive

· Most likely, this drive will be the CD-RW drive.

· Using available software, burn the contents of the media and the access copies to a CD.

Step 16: Switch from the original OS environment to a contemporary OS environment

· Once the files have been burned to CD, you can now switch to a more contemporary OS environment, where access to DSpace and other digital preservation tools will be better

· Access the CD where the original files and access copies are located, and download all the files to the contemporary OS hard drive

· Attempt to create access copies for files where it was not possible to do so in the original OS, by using more contemporary software or emulation techniques.

Step 17: Ingest files into DSpace

· Ingest the files and access copies part of the same “Item” that was created for ingesting the disk image and its associated metadata (see Step 9).

· Add additional descriptive metadata to the “item” during the ingest process.

· At this point (the end!), if all has gone according to plan, you will have these 4 elements that will comprise the “Item” in DSpace, and help preserve the media’s content and ensure its authenticity:

· Disk image of the original media

· Metadata associated with the disk image, compressed into a .tar file

· A set of unaltered files from the media

· A set of “access copies” of the files, if necessary

· And these elements may look like this:

[screenshot of DSpace “Item” page with these 4 elements]

Adapted by Patricia Galloway, spring 2010, from “Quick Guide to DBCAH Born-Digital Data Migration & Preservation at the Goodwill Computer Museum,” developed fall 2009 by Zach Vowell, DBCAH Digital Archivist.

??????????[Move up migration to contemporary/open format to after Step 7, if it’s possible to do so (i.e., within Linux/Unix)]??????????[would need tool]

??????[With word processing files, such as Word files, where there are so many different versions of each software, is it better to migrate to an open format from the native environment]??????????[for Word, RTF and/or PDF use copy]
PAGE
1

