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IF-City: Intelligible Fair City Planning
to Measure, Explain and Mitigate Inequality

Yan Lyu, Hangxin Lu, Min Kyung Lee, Gerhard Schmitt, and Brian Y. Lim

Abstract—With the increasing pervasiveness of Artificial Intelligence (AI), many visual analytics tools have been proposed to examine
fairness, but they mostly focus on data scientist users. Instead, tackling fairness must be inclusive and involve domain experts with
specialized tools and workflows. Thus, domain-specific visualizations are needed for algorithmic fairness. Furthermore, while much
work on AI fairness has focused on predictive decisions, less has been done for fair allocation and planning, which require human
expertise and iterative design to integrate myriad constraints. We propose the Intelligible Fair Allocation (IF-Alloc) Framework that
leverages explanations of causal attribution (Why), contrastive (Why Not) and counterfactual reasoning (What If, How To) to aid domain
experts to assess and alleviate unfairness in allocation problems. We apply the framework to fair urban planning for designing cities that
provide equal access to amenities and benefits for diverse resident types. Specifically, we propose an interactive visual tool, Intelligible
Fair City Planner (IF-City), to help urban planners to perceive inequality across groups, identify and attribute sources of inequality, and
mitigate inequality with automatic allocation simulations and constraint-satisfying recommendations (IF-Plan). We demonstrate and
evaluate the usage and usefulness of IF-City on a real neighborhood in New York City, US, with practicing urban planners from multiple
countries, and discuss generalizing our findings, application, and framework to other use cases and applications of fair allocation.

Index Terms—Fairness, Intelligibility, Explainable Artificial Intelligence, Resource Allocation, Urban Planning
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1 INTRODUCTION

The increasing pervasiveness of Artificial Intelligence (AI)
has raised concerns of algorithmic bias, unfairness and
discrimination, since AI benefits some segments of society
while disadvantaging others [1]. Current methods to assess
fairness in model outcomes and decisions focus on visual-
izing tabular data with bar charts and scatter plots [2], [3],
which are well-suited for data scientists and machine learn-
ing engineers. However, assessing fairness requires domain
experts and stakeholders to consider relevant factors and
balance multiple criteria [4]. For example, assessing fairness
in urban planning needs to satisfy different residents with
diverse needs, and requires domain-specific visualizations,
such as maps with 3D buildings [5], [6]. Hence, instead of
having just data scientists assess model fairness, fairness
visualizations should be integrated into domain-specific
tools to involve other stakeholders to participate collabo-
ratively [7], [8].

Such participatory design will require users to under-
stand how the intelligent system determines fairness in
order for them to mitigate unfairness. Fortuitously, explana-
tions are an effective way for users to understand and trust
system outcomes [9], [10], [11]. Recently, many explainable
AI (XAI) techniques have been developed, such as attribu-
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tion [12], [13], contrastive [14] and counterfactual [15], [16]
explanations. This motivates us to apply XAI techniques to
help planners to understand how fairness is computed and
how to improve fairness in their planned solutions.

Much recent progress on fair machine learning focuses
on algorithmic bias in inference-based decisions [17], [18],
yet there is also a strong need for fairness in resource allo-
cation for domains such as urban planning, organizational
management, public services, and healthcare [7]. Automatic
algorithms can find optimal allocations, but they may over-
look nuances and normative decision points that are part of
complex real-world systems [8]; instead, the participatory
involvement of stakeholders and domain experts is neces-
sary in fair allocation decisions [7].

Hence, we propose the Intelligible Fair Allocation (IF-
Alloc) Framework that leverages explainable AI to help
users assess fairness, identify sources of inequality, and
mitigate inequality. Specifically, we adopt Lim and Dey’s
user-centered intelligibility framework of question types
[19] to satisfy user reasoning needs for causal attribution
(Why), contrastive (Why Not) and counterfactual reasoning
(What If, How To) [11], [14]. We use the Generalized Entropy
Index as the fairness metric and leverage its additive decom-
posability to attribute inequality to constituent components.

We applied the framework to develop the Intelligible
Fair City Planner (IF-City) for fair urban planning to balance
the benefits from building locations across residents with
different preferences. For example, having large parks in
the city is valuable to nature lovers, but may cause schools
or offices to be placed farther away and disadvantage stu-
dents and office workers, respectively. IF-City is an urban
planning visualization and 3D model design tool that helps
urban planners to design fairer cities by placing buildings on
a map, simulating the allocation of the resident population
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Fig. 1: Dashboard user interface of IF-City for fair urban planning with main 3D map view, side bar with several indicators,
and pop-up controls. Urban planners can add or edit buildings of different function types, and evaluate the impact on
resident benefits and inequality. Users can also query for recommendations to improve fairness and save design iterations.

with iterative proportional fitting (IPF) [20], and computing
the fairness indicator for the urban plan based on accessibil-
ity to and preferences for different amenities. IF-City helps
users to understand the fairness calculation by visualizing
where benefits were unfairly allocated to different resident
types across locations (Why). Urban planners can update the
urban design to explore how inequalities can be reduced
(What If), and compare between design iterations (Why
Not). IF-City also provides recommendations for editing the
quantity and distribution of amenities to optimize fairness
(How To), and predicts their partial contributions, as calcu-
lated by Shapley values, towards improving overall fairness
(Why of How To). In summary, our contributions are:

• Intelligible Fair Allocation framework (IF-Alloc) to perceive
fairness, explain causes and mitigate inequality for fair
urban planning.

• Intelligible Fair Planning recommendation (IF-Plan) tech-
nique to generate recommendations for design edits to
conveniently improve fairness in urban planning.

• Intelligible Fair City Planner (IF-City), an interactive visu-
alization tool for urban planners to design fair neighbor-
hoods by iteratively assessing and improving fairness. It
simulates the allocation of a resident population, com-
putes an inequality indicator, explains possible causes
visually based on resident type and location.

We demonstrated IF-City with a use case for designing
a neighborhood in New York City to improve fairness, and
evaluated it in a formative study with practicing urban plan-
ners and urban designers to investigate how the explanation
features are used to understand and improve fairness in
urban designs. We conclude with a discussion to generalize
IF-City and the IF-Alloc framework.

2 RELATED WORK

We introduce notions of fairness for predictive and alloca-
tion systems, and relate them to urban planning. We then
describe visualization tools to assess and improve fairness,
explain data and models, and analyze and plan cities.

2.1 Fairness Definitions and Metrics

2.1.1 Metrics of Fair Outcomes
Recently, research on bias and fairness in machine learning
has been very active [18]. Such works frame fairness by
individual or group fairness. Individual fairness requires
that similar individuals should have similar outcomes (e.g.,
people with similar credit scores should have similar loan
approval chances). However, defining what makes individ-
uals similar may be difficult. Instead, individuals can be
grouped based on having similar attributes or demograph-
ics. In socially-sensitive applications, groups are defined
by protected attributes like age and gender. Group fairness
requires that different groups have similar outcomes (e.g.,
younger and older workers with similar other attributes
should have similar hiring chances). Many fairness metrics
(e.g., statistical parity [21], equal opportunity [22], condi-
tional equality [23], intersectional bias [3]) have been pro-
posed to evaluate the balance in decision outcomes. In this
work, we focus on supporting fairness across groups, but
focus on resource allocation instead of predictive decisions.

2.1.2 Metrics of Fair Allocation
Unlike algorithmic fairness that considers how fair a pre-
diction result is, fair resource allocation seeks to allocate
limited resources fairly to individuals or organizations with
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varying demands or needs [7], [24], [25], [26]. Metrics
to measure allocation fairness include Jain’s index [27],
Max-min/min-max [28], proportional fairness [29], and en-
tropy [30]. Other popular metrics measure inequality as op-
posed to fairness, especially to quantify income inequality.
For example, the Gini coefficient [31] and Hoover index [32]
determine inequality by measuring the deviation of the
income distribution of the Lorenz curve from the diagonal
line of perfect equality [31]. These metrics provide a single
measure to indicate the inequality in a population, but have
limited interpretability to discern whether the inequality
comes from high- or low-income groups. The Atkinson
index [33] includes an inequality aversion parameter ε that
can be used to increase sensitivity towards changes in
low incomes. However, for populations with diverse sub-
groups, this metric does not explain which groups are most
or least disadvantaged. This requires a metric to be additively
decomposable to attribute inequality to specific groups. One
such metric is the Generalized Entropy (GE) index [34], [35],
derived from information theory to measure redundancy. It
is often used to measure the diversity of incomes. It also
has a sensitivity parameter α to adjust sensitivity towards
low or high incomes. Special cases of the GE index are the
mean log deviation (α = 0), Theil index (α = 1), and half of
the squared coefficient of variation (α = 2). Although other
inequality measures such as Variance of Logarithms and Co-
efficient of Variation are also decomposable [36], GE index
has been applied to evaluating the fair allocation of urban
resources, including healthcare [37], transportation [38], and
ecosystem [39] services. In this work, we leverage the addi-
tive decomposability of the GE index to satisfy a common
axiom in explainability [40] to attribute inequality to specific
groups with between-group and within-group inequalities,
on their accessibility to different building types. Hence, from
these decomposed inequalities, the distribution of benefits
can be compared across different groups.

2.1.3 Fair Allocation in Urban Planning
The fair access to scarce public resources, such as parks,
hospitals and schools, is a paramount goal in urban plan-
ning. Urban and transportation planners typically examine
the accessibility to these amenities by the distance from
housing to the amenity. Accessibility differs by transport
modes, including walking [41] and public transit [42], and
can be calculated using various metrics [43]. While visu-
alizing accessibility can indicate if benefits are unequally
distributed, it is difficult to see which regions have more in-
equality. Hence, several methods have proposed measuring
various inequality metrics, such as the Gini coefficient [44],
and local indicators of spatial autocorrelation (LISA) [45].
However, these inequality metrics are typically reported for
each city globally, rather than by sub-regions, though some
recent works visualize them geospatially (e.g., [44]). In this
work, we visualize housing and amenity locations, and the
accessibility and local inequality of each housing location.

2.2 Visualization and Analytical Tools
2.2.1 Visualization for Algorithmic Fairness
Many visualization tools have been developed to examine
fairness or bias in machine learning. Commercially available

ones include IBM AI Fairness 360 [46], Google Tensorflow
Fairness Indicators [47], and Microsoft Fairlearn [48]; these
provide basic bar charts and scatter plots to show predictive
parity in datasets and model predictions. More sophisticated
visualization interfaces help to examine other forms of
unfairness, such as intersectional bias in FairVis [3], and
causal fairness in Silva [49]. However, these only provide
a high-level, global view of the model fairness, and do not
identify which subgroups are particularly unfairly treated.
DiscriLens [4] can identify itemsets that are discriminatory
using rule mining, though these data-driven sets may not
align with domain-specific groups and be less interpretable.
FairSight [2] can examine individual and group fairness,
and explain the influence of each feature based on feature
perturbation. This explainability method is common for
black boxes, but suffers from approximation errors. In this
work, we visualize inequality across subgroups in a domain-
specific visualization for urban planning, and explain the
sources of inequality based on the additive decomposability
of the Generalized Entropy Index, which is a white box
method that is deterministically calculated. Though, we
compute feature attributions for our planning recommenda-
tions using Shapley values, which is similar to perturbation.

2.2.2 Visualization for Fair Resource Allocation

Unlike research on visualizing unfairness in datasets and
predictive models, visualizations of fair resource allocation
are sparser. AlgoCrowd [50] visualized the AI-driven match-
ing between workers and tasks in a dashboard, showing
the distributions of worker reputation and productivity, the
Jain fairness index over rounds of task allocation, and an
argumentation-based explanation of why each worker was
allocated. VisMatchmaker [51] supports the comparison of
trade-offs between two solutions for a job allocation task
using novel but unfamiliar visualizations (number lines and
glyphs). To promote adoption, it is preferable to use visual-
izations that are familiar to each domain. Talen visualized
the distribution of accessibility using geographical maps
that are familiar to urban planners [52]. Similar to [51],
FairVizARD [53] enables comparing the outcomes between
two matching algorithms for ride-sharing, visualizing with
a map view of taxi and request locations, and a graph view
showing the time series variation of several indicators. In IF-
City, we leverage well-known geographical map, heatmap,
and bar chart visualizations to convey information about
inequality, benefits, and accessibility. Furthermore, while
the aforementioned visualizations support fairness assess-
ments, they do not directly support mitigating unfairness
through redesigns, which IF-City does.

2.2.3 Visualizations for Model Explainability

Other than being fair, intelligent systems need to be under-
standable, thus there has been significant recent research
on explainable AI (XAI) [9], [10]. Drawing from psychology
and philosophy, Miller [14] argued that explanations should
be causally attributional, contrastive, and counterfactual.
These correspond to explanations of feature attributes [12],
[13], contrastive explanations [54], [55], and counterfactual
explanations [15], [16], [56], [57]. Other explanations lever-
age sophisticated visualizations, such as partial dependence
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plots [58], [59], network activations [60], [61], network sum-
maries [62], saliency maps [63], feature visualizations [64].
The large variety of XAI techniques makes it hard for de-
velopers to prototype with them. ExplAIner [65] proposed a
framework to unify how XAI techniques are used, and de-
fined a pipeline to understand, diagnose and refine models.

Some research has focused on defining workflows and
developing rich dashboards combining multiple visualiza-
tions for explanations. Krause et al. [66] visualized the
model performance on groups of instances with similar fea-
ture importance. To make sense of the high number of fea-
tures or patterns in models, matrix layouts have been used
to visualize extracted rules with RuleMatrix [67] and im-
portant features in random forests with ExMatrix [68]. Sup-
porting interactivity by investigating counterfactual cases
has been particularly popular. Prospector [59] visualizes
with partial dependence plots and sliders, allowing users
to investigate how predictions change with different feature
values. Gamut [69] provides similar capabilities for gen-
eralized additive models (GAM). DECE [56] provides an
interactive visualization to refine counterfactual queries for
subgroups of instances. The What-If Tool [16] provides vi-
sualizations of confusion matrices, scatter plots, histograms
for iterative counterfactual explorations. These tools were
designed primarily for data scientists and engineers familiar
with statistical concepts and graphs. For domain experts or
lay users, simpler interactions will be more accessible. To
support the user-centered design of explanations, several
frameworks have been proposed based on the human rea-
soning process [11], and patterns of user in inquiry [19],
[70], [71]. In this work, we implemented Lim and Dey’s
intelligibility taxonomy of question types [19] to understand
and improve fairness. While some XAI tools can be used to
investigate AI fairness (e.g., with the What-If Tool [16]), they
only support viewing predictive parity or equality [72], and
not fair allocation, which is our focus in this work.

2.2.4 Visualization for Urban Analysis and Planning

To understand complex urban environments, many visu-
alizations have been developed to view spatio-temporal
movement patterns [73], [74], [75], [76], [77], [78], transit net-
works [79], air pollution [80], activities [81] and events [82].
But visualizing inequality in cities has been rudimentary
with locations and simple metrics on maps [44], [52].

Urban planning requires more sophisticated interactive
visualizations to design the urban layout, simulate stake-
holder and resident behaviors in the urban environment,
and visualize various urban indicators (metrics) [83]. Pop-
ular tools used by professional urban planners, such as
ArcGIS [84] and UrbanSim [83], use 2D and 3D maps as
the main view. Recently, tools have been designed to inform
and elicit feedback from collaborators and stakeholders [85],
[86]. These tools calculate urban indicators to visualize
geospatially, and can provide AI suggestions to optimize
planning. However, they currently do not allow planners
to assess, analyze, and mitigate inequality. In this work,
we extend the visual paradigm of urban planning tools to
support these new capabilities.

3 INTELLIGIBLE FAIR ALLOCATION FRAMEWORK

We focus on designing an urban plan to be more fair to
diverse groups of residents. This can be treated as a fair
allocation problem to allocate building resources such that
different residents equally benefit despite differing prefer-
ences. We consulted with 5 urban planning experts in an
urban planning research lab (two are our coauthors) to pro-
pose an iterative 3-step framework for fair urban planning:
i) perceive the fairness of the design, ii) identify causes for
the unfairness, and iii) mitigate the inequality by identi-
fying opportunities for change. Repeat as necessary. This
differs from prior fairness visualization approaches for data
scientists (e.g., [2]) by focusing on fair resource allocation
and targeting for use by urban planners. Our application
towards urban planning presents two further challenges
that our approach addresses: 1) Planning is an iterative
process where urban planners trial each design, evaluate
the outcomes with a simulation, and redesign newer plans.
2) Users are domain experts (urban planners), not technical
experts (data scientists), so the system predictions need
to be explainable and intuitive. This clarifies the need for
intelligible fairness in urban planning.

3.1 Design Requirements
From discussions with our domain experts, we identified
design requirements for base urban planning and for intelli-
gible fair design. To support urban design, our visualization
should support navigating on a map, viewing building
heights and functions, and adding, editing or deleting build-
ings. Thus, basic requirements are to provide a 3D map of
buildings, colors for different building functions, drawing
facilities, and popups to change building parameters.

To display and explain fairness indicators in urban de-
sign, we drew inspiration from the Intelligibility Taxonomy
of Lim and Dey [19]. It defines explanations for intelligent
systems for question types (e.g., Why, Why Not, What If,
How To), and has been effective in providing useful expla-
nations for non-technical users (i.e., not data scientists). We
identified requirements for Intelligible Fair (IF) allocation:
IF.1 Inequality Indicator. Provide a quantitative indicator

of What inequality score was calculated to represent the
state of the urban design.

IF.2 Inequality Attribution by Resident Type. Explain Why
the inequality was high/low by showing which res-
ident types were advantaged or disadvantaged. This
helps users know who to satisfy more/less.

IF.3 Inequality Attribution by Location. Explain Why in-
equality was high/low by showing which locations had
higher or lower benefit than average. This helps users
know where to change buildings to improve access to
amenities.

IF.4 Inequality Trace. Explain Why each location had high
(or low) benefits by tracing the calculation from resident
preferences of and accessibility to each amenity.

IF.5 Population Simulation to Allocate Residents. Simu-
late the outcome (What If) of the inequality with itera-
tive design changes. For each urban plan redesign, this
requires calculating i) the allocation of residents based
on diverse preferences, and ii) the consequent benefits
and reporting the resulting inequalities.
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Fig. 2: IF-Alloc Framework to perceive fairness, identify causes, and mitigate inequality for fair urban planning. On
perceiving fairness by viewing the Inequality score (Step 1), the user flow to identify the causes for inequality starts with
noting uneven benefits across resident types (2), seeing how differently benefited one group is (2a), and noting its large
inequality (2b). Next, identify the location of inequality (3) by either filtering for buildings with higher occupancy and
deviating benefits (3a), or locating dark blocks and buildings in the relative benefits heatmap (3b). Then trace the cause
for low or high benefits due to accessibility to various amenities and resident preferences (4). The user flow to mitigate
inequality iteratively has two approaches — through simulation trials by adding or editing buildings (5), or using the
recommendation system (6) and editing buildings to satisfy the recommendations. The user can track improvements in
inequality through the design iteration timeline (7), and iteratively improve the design (back to Step 1).

IF.6 Intelligible Fair Planning Recommendation. Recom-
mend How To change the urban plan to improve fair-
ness, informing how much improvement to expect (pre-
diction of What If ) and Why each change is beneficial
(attribution towards changes in inequality). This helps
the user know where to make changes, which building
functions to change, by how much floor area. Instead of
manually and tediously trying designs, this accelerates
designs for the user to try. To support design priorities,
recommendations should be constrained by construc-
tion budgets, height limits, To retain prior benefits, this
should also limit whether benefits to specific resident
types should only go up, go down, or stay the same.

IF.7 Design Iteration Timeline. Provide a timeline to com-
pare between design iterations, showing changes in
various indicators (e.g., Inequality, Population, Plan-
ning Area). Users should also be able to load previous
urban plans for comparison (Why Not).

These requirements support the goals for intelligible fair-
ness in urban planning to perceive fairness (IF.1, IF.7), identify
causes (IF.2, IF.3, IF.4), and mitigate inequality (IF.5, IF.6).

3.2 IF-Alloc Framework

Based on the design requirements, we introduce the IF-
Alloc framework (Fig. 2) for Intelligible Fair Allocation in
urban planning to: I) perceive unfairness with the Inequality
Indicator; II) identify causes of inequalities by attributing
towards resident types (2) based on uneven benefits (2a, 2b),
or location (3) by filtering problematic areas (3a) or viewing

heatmaps (3b), and tracing to root causes in accessibility
being too high or poor (4); III) mitigate inequality by manually
editing buildings (5) or following automatic fair planning
recommendations (6), and reviewing changes in inequality
iteratively in a timeline (7). The user can iteratively repeat
these steps towards a desired fairness level.

4 IF-CITY: TECHNICAL APPROACH

We describe our technical approach (Fig. 3) to implement
IF-Alloc for fair urban planning in the Intelligible Fair City
Planner (IF-City). Specifically, we calculate: 1) the acces-
sibility to buildings of various amenities, 2) the benefit
of each resident based on their preferences for different
amenities and their accessibility, and 3) the inequality based
on inputting the benefits into the Generalized Entropy In-
dex. The inequality is additively decomposable by groups
of residents and location. Computing these indicators first
depends on a predetermined building layout, then the
subsequent allocation of residents, which we describe in
Subsection 4.4. Finally, we describe our recommendation
system for fairer edits to accelerate the design iteration.

4.1 Accessibility to Building Type (IF.4)
In urban planning, buildings are defined by their functions
or amenities. Residential buildings provide homes for peo-
ple; commercial buildings support commercial activities like
retail and restaurants; educational buildings include schools
and libraries; cultural buildings promote culture in muse-
ums and theaters; and parks support outdoor recreation.
These are defined as building function types f .
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Fig. 3: System overview of data preparation and calcula-
tions. Map and building data (1a) are used to extract build-
ing function types (1b) and their existing locations. User tra-
jectories (2a) are extracted from location-based social media
data and clustered (2b) to identify resident types (2c) and
their average preferences for different building functions
(2d). The resident allocation (3) simulates the migration of
residents into the designed city. The benefits for the popu-
lation are calculated by resident type (4a) and location (4b),
which are used to calculate the group inequality for each
resident type (4c). To support understanding the fairness
indicator (4c), the user can view which resident types had
unfair benefits (4a) or where benefits were unfairly located
(4b), redesign the urban plan to change benefits and reduce
inequalities through direct manipulation (5a) or run the
recommendation to receive fairer design proposals (5b).

Accessibility is the ease of reaching spatially dispersed
resources with a certain function. It depends on the distance
to and the amount of each resource. The farther a building
is from the resident, the lower the accessibility. The larger
the floor area of the function in the building, the higher
the accessibility (e.g., adding offices will raise the likelihood
of having a job nearby). We compute accessibility with the
gravity model [87] which treats resources farther away as
having inversely smaller effects. For a specific function type
f , the accessibility at a residential building location l is:

al,f =
∑

`∈L

v`,f
ρf

e−κfdl,` , (1)

where ` ∈ L is a nearby building, v`,f is its floor area
for function type f , dl,` is the distance of ` to residential
building l, κf is the impedance to travel for the function f
[88], and ρf is the planning priority weight for function type
f to prioritize for equity. For example, residents typically
need more space for a park than for retail for similar utilities,
so the priority weight of parks should be higher.

4.2 Resident Preference, Utility, and Benefit (IF.4)

Cities attract diverse residents who have various interests or
preferences. Even in the same residential building, different
residents will value their location differently, i.e., they will
have varying utilities at their location due to differing pref-
erences to nearby amenities. For example, placing a large
park near a residential building will be more appreciated
by residents who love outdoor activities than those who
prefer cultural facilities. We calculate the utility of individ-
ual resident i living at residential building location l as the
preference-weighted sum of accessibility, i.e.,

ui,l =
∑

f∈F
πi,fal,f , (2)

Fig. 4: Group benefit calculation for one example resi-
dent type. For a residential building (1a), within a dis-
tance threshold radius (1b), measure the floor area of each
building type (1c), and multiply by decaying distance to
calculate the accessibility (1d). For a resident type (2a),
multiply their preferences (2b) with accessibility to get the
weighted accessibility (2c). For residents of the type in the
residential building (3a), for each person (3b), calculate the
mean weighted accessibility to get the total utility (3c). The
difference from the original utility is the benefit (3d).

where F is the set of non-residential building function types,
and πi,f is the resident’s preference for each function type
f . The preferences can be acquired subjectively using pref-
erence elicitation surveys [89], or implicitly with objective
data-driven measures from their visit trajectories in location-
based social media [90]. In IF-City, we obtained preferences
with the latter approach (details in Appendix C).

Since residents would have had a prior residence before
being placed in the new urban design, they would have a
prior utility u(0)

i that is non-zero. This can be estimated from
location-based activity data. Hence, we seek to balance the
change in utility, which we denote as benefit, i.e.,

bi,l = ui,l − u(0)
i . (3)

We assume that residents would not relocate to the new
urban design if their benefits were negative. Hence, alloca-
tions will not be made for such cases, and we can balance
the benefits instead new utility scores.

Balancing resident benefits improves equality, but some
groups, such as the elderly, children, and low-income work-
ers, may still be disadvantaged and need further help. This
would improve fairness through equity. To support this, we
define a population priority weight ρg for resident type g of
resident i to prioritize or penalize his or her benefit, i.e.,

bi,l ← ρgbi,l, (4)

where ρg ≥ 0. Setting ρg < 1 for a disadvantaged resident
type will make the effective benefit lower. The weighted
benefits will then be used to the calculations for inequality.

Fig. 4 summarizes the steps to calculate resident benefit
from accessibility and preferences. These satisfy require-
ment IF.4 (Inequality Trace). Next, we calculate a fairness
score for all residents from their benefits.
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4.3 Generalized Entropy for Fairness Attribution (IF.2)
We employ the Generalized Entropy (GE) index [35] to
calculate the extent that the residents’ benefits are unevenly
distributed. It is popularly used to measure income inequal-
ity and is the generalization of information entropy [34],
[35]. The GE index of the set of benefits B of all residents is

εα(B) =
1

nα(α− 1)

n∑
i=1

[(
bi
b̄

)α
− 1

]
, (5)

where bi is the benefit of individual resident i, b̄ is the global
mean benefit, n is the number of residents (population size),
and α is a sensitivity parameter, α ∈ R. We choose α = 2,
for εα to be more sensitive towards individuals with smaller
benefits (i.e., disadvantaged groups). The GE index has nice
explainable properties of being additively decomposable.

Additive. The GE index is a simple sum of terms for
each individual’s benefit bi, so decomposing it into all
individuals can identify which individuals have above or
below average benefit, and hence affect inequality.

Subgroup decomposability. By partially aggregating
GE index inequalities of several individuals, we can calcu-
late the subgroup inequality of non-overlapping groups g
within the population. To aid interpretability, these terms
can be divided into between-group inequality εαb (B) and
within-group inequality εαw(B). The total inequality is also
conveniently just the sum of these components, i.e.,

εα(B) = εαb (B) + εαw(B). (6)

The between-group inequality measures how different
the mean benefits of different groups are, i.e.,

εαb (B) =
∑
g∈G

ng
nα(α− 1)

[(
b̄g
b̄

)α
− 1

]
, (7)

where b̄g is the mean group benefit, ng is the number of
individuals in group g, and G is the set of all groups.

The within-group inequality measures how different the
individual benefits within each group are, i.e.,

εαw(B) =
∑
g∈G

ng
n

(
b̄g
b̄

)α
εα(Bg), (8)

where Bg is the set of individual benefits of residents in
group g. We demonstrate how total inequality, between- and
within-group inequalities can vary with different benefit
distributions and group divisions in Appendix B. In IF-
City, we grouped residents with similar preferences using
k-means clustering on their frequency of visiting various
building types (details in Appendix C). These calculations
identify which resident types raised or lowered inequality,
and satisfy IF.2 (Inequality Attribution by Resident Type).

4.4 Population Simulation to Allocate Residents (IF.5)
Changes in an urban plan affects the location l where each
resident iwill live, thereby affecting the benefit and inequal-
ity. We determine these locations by solving a population
allocation problem based on the user’s urban plan. This
satisfies IF.5 (Population Simulation to Allocate Residents).

We first estimate the marginal probability pi of resident
i moving to the city. pi should be monotonic to the average

benefit b̄i =
∑
l∈LRes

bi,l/|LRes| of the resident living in all
residential building locations LRes in the city, where bi,l is
the resident’s benefit of living at building l. We normalize
this as a probability with a tanh transform function, i.e.,

pi = max(tanh(γb̄i), 0), (9)

where γ > 0 is a normalization parameter that is deter-
mined by the constraint that the total probability of all
residents should be equal to the sum of occupancy of all
residential buildings in the city, i.e.,

∑
i pi =

∑
l ol, where ol

denotes the occupancy of residential building l. Note that b̄i
could be negative because the resident may not benefit from
moving to the city. In this case, the probability pi is 0.

Given the marginal distribution pi for the resident i for
the whole city, we seek to estimate probability pi,l of the
resident moving into each specific building l. We perform
iterative proportional fitting (IPF) [20], [91] to estimate pi,l
by treating {pi,l}I,L as a matrix of rows i and columns l. At
each iteration step η, for each residential building location
l with vacancy, IPF estimates pηi,l with the following two
equations for the odd and even steps, respectively:

p̂
(2η−1)
i,l =

p̂
(2η−2)
i,l p

(2η−2)
i∑

l p̂
(2η−2)
i,l

, p̂
(2η)
i,l =

p̂
(2η−1)
i,l o

(2η−1)
l∑

i p̂
(2η−1)
i,l

, (10)

where p(2η−2)
i =

∑
l p

(2η−2)
i,l and o

(2η−1)
l =

∑
i p

(2η−1)
i,l are

the marginal distributions across individuals and locations,
respectively. The iterations terminate when pi,l converges
to a small threshold. The resident i is thus allocated to
building l with the probability pi,l. Residents are allocated
in a random order until all buildings are fully occupied.

IPF can be generalized to consider other real-world
factors, such as diverging preferences among residents at
the household level [92], and resident income and property
value [92], [93].

4.5 IF-Plan: Fair Planning Recommendation (IF.6)

While population allocation simulation helps to provide
feedback on the user’s design, it can be tedious for users to
iterate designs on their own, leading to less productive trial-
and-error. To speed up the design iterations, we provide a
Fair Planning Recommendation system to satisfy IF.6.

Our approach to generate the counterfactual expla-
nations is distinct from current approaches in machine
learning by: 1) recommending a numeric outcome and
optimizing its value, rather than an alternative target la-
bel for categorical classification [15]; 2) supporting user-
constrained recommendations by solving a constraint op-
timization problem, rather than using a slow brute-force
search method [57]; 3) recommending in terms of coarser
user-manageable features, rather than raw fine-grained fea-
tures; and 4) indicating the importance of each change by at-
tributing their contribution towards the improved outcome
using Shapley value calculations (inspired by SHAP [12]).
This is the first work to formulate fair urban planning as an
optimization problem. We propose a heuristic algorithm to
approximate the optimal fair urban design by adapting the
Frank-Wolfe conditional gradient method [94].
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4.5.1 Problem Formulation

An urban design is the set of floor areas for all buildings of
different function types in the city. Given the current design,
the user’s goal is to propose a design change that decreases
the inequality index. Instead of recommending changes to
specific buildings, we recommend changes to a coarser unit
of geography — the census block k ∈ K . This reduces the
search complexity for an optimal solution, aligns with plan-
ning practice to consider planning at coarser granularity,
and allows for more freedom in designing specific buildings.

Let δk,f = ∆vk,f denote the floor area change of census
block k and building function type f , vk,f denotes the floor
area of existing block k and type f . The new design vk,f +
δk,f determines the allocation of residents (i.e., pi,l) and thus
a distribution of benefitsB for all the allocated residents. We
seek the optimal δk,f , such that the inequality index εα(B)
defined by Eq. 5 is minimized, i.e.,

minimize εα(B) (11)
subject to δk,f + vk,f ≥ 0, (12)∑

f
(δk,f + vk,f ) /sk − h̄k ≤ h(max)

∆ , (13)∑
k

∑
f
|δk,f | ≤ δ(max), (14)

|
∑

k
δk,f=Res| ≤ δ(max)

f=Res. (15)

Eq. 12 constrains that the final floor area cannot be negative,
since that is physically impossible. Eq. 13 constrains the
increase in average height to less than a small threshold
h

(max)
∆ , where sk is the total building footprint (ground floor

area) in the block k and h̄k is the current average height
in the block; this preserves the skyline of blocks. Eq. 14
constrains how much the floor area in the whole city can
change with a construction budget δ(max). Eq. 15 constrains
the total change of residential floor area to be smaller than a
threshold δ(max)

f=Res to stabilize population changes.
Furthermore, as urban planners may want to control the

increase or decrease of group mean benefits for some resi-
dent types, we add an objective to constrain the generated
design recommendations. Given any arbitrary new design,
let ∆b̄g+ , ∆b̄g− and ∆b̄g0 denote the group average benefit
difference between the new design and the current design
for the groups whose mean benefits are to be increased
(g+ ∈ G+), decreased (G−), and kept unchanged (G0),
respectively. The objective is to limit ∆b̄g+ > 0, ∆b̄g− < 0,
and |∆b̄g0 | ≈ 0. We define a solution penalty as

φ(G+, G−, G0) =
∑

g+∈G+
−min(∆b̄g+ + τ, 0)

+
∑

g−∈G−
max(∆b̄g− − τ, 0)

+
∑

g0∈G0
max(|∆b̄g0 | − τ, 0), (16)

where τ is a small threshold with τ ≥ 0. Adding this penalty
function to Eq. 11 gives the new objective function

minimize εα(B) + λφ(G+, G−, G0), (17)

which searches for δk,f that minimizes inequality while
satisfying the design constraints. λ is a penalty hyperpa-
rameter, which we calibrated to be large, i.e., λ� 1.

Algorithm 1 Inequality Mitigation Algorithm

Input: Initial design v = {vk,f}K,F , design constraints P
Output: δc = {∆vk,f}K,F

1: function INEQUALITY MITIGATION
2: Randomly initialize δc ∈ P , c = 0
3: while ∆m > ε do
4: δ = argminδ∈P ∇δm(δc + v)>(δ − δc)
5: δc+1 = δc + ζ(δ − δc), ζ = 2

2+c
6: v ← δc+1 + v
7: mc+1 = m(v)
8: ∆m = mc+1 −mc

9: c = c+ 1
10: end while
11: return δc
12: end function

13: function m(v)
14: Run IPF to allocate residents to urban design v
15: Get benefit B of allocated residents by Eqs. 3 and 4
16: Get inequality εα(B) and penalty φ(G+, G−, G0) by

Eqs. 5 and 16
17: return εα(B) + λφ(G+, G−, G0)
18: end function

4.5.2 Heuristic Solution
We denote the objective function in Eq. 17 as m(δ + v),
where matrix v = {vk,f}k∈K,f∈F denotes the current floor
areas of each function type f in each census block k,
and matrix δ = {δk,f}k∈K,f∈F denotes the changes in
floor areas to recommend. Note that for each potential δ
value, the total resident benefits B needs to be computed
using IPF (described in Section 4.4), which is stochastic.
This makes optimizing m inefficient. To efficiently find the
optimal δ, we propose an inequality mitigation algorithm
(Algorithm 1) by employing the Frank-Wolfe conditional
gradient method [94] to iteratively estimate δ by linearly
approximating the objective function m.

Algorithm 1 starts with the initial design v with a
random design change δ that is within the search space P
defined by the constraints Eqs. 12 to 15. In each iteration
c, it approximates the objective function m(δ + v) with
the first-order Taylor series expansion at the point δc + v,
i.e., m(δc + v) + ∇δm(δc + v)>(δ − δc). Minimizing this
linear equation finds δ that points to the direction towards
the optimum (Line 4). We then update δc+1 with step size
ζ = 2

c+2 (Line 5). The objective function m then updates by
allocating residents to the updated urban design v + δc+1

and calculating benefits, inequality and the object function
value (Lines 13-18). The algorithm terminates when the
difference between consecutive objective values is smaller
than a threshold, i.e., mc+1 −mc ≤ ε.

4.5.3 Fairness Attribution to Edited Blocks
The recommendation will propose edits of multiple function
types for several census blocks. It may recommend editing
many blocks, which is tedious for the user. To help users
prioritize which blocks to edit, we calculate another attribu-
tion explanation to indicate the partial contributions of each
block towards improving the overall fairness. Inspired by
SHAP [12] for explaining machine learning classifiers, we
calculate these attributions as Shapley values [95], which
fairly measure the contributions independent of calculation
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Fig. 5: Basic features of IF-City for urban design. a) Charts
showing Planning Indicators for floor areas for each func-
tion type, and Population Indicators for number of residents
of each type with their respective preferences for function
types. b) 3D map showing buildings that are color-coded
by building type as indicated in the Planning Indicators.
Users can navigate around the city by zooming, panning,
and rotating the 3D visualization. c) Users can view details
by selecting blocks or buildings and open a pop-up dialog.
This shows floor area, height, building type; for residential
buildings, this further shows population and benefit indica-
tors, and accessibility to other building types. Users can edit
the urban design by adding, editing or deleting buildings.

order. For a block k among the set of recommended blocks
to edit R, k ∈ R, we calculate its attribution towards
decreasing inequality as

1

|R|
∑

S⊆R\{k}

contribution towards fairness︷ ︸︸ ︷
−(εα(BR)− εα(BS))

/ # of combinations︷ ︸︸ ︷
C(|R| − 1, |S|) (18)

where S is a subset of R without block k; BS is the set
of benefits after editing blocks S as recommended, εα(BS)
is the inequality due to benefits BS ; BR and εα(BR) are
the benefits and inequality due to all recommended block
edits. C(|R| − 1, |S|) denotes the number of combinations
S that exclude block k chosen from set R. Since permuting
all combinations is time-consuming, we adopt a sampling
technique [96] that uses the average attribution of a few
permutation samples to approximate the Shapley value to
speed up calculations. Note that the attributions are only
representative if all the recommended changes are executed.

5 IF-CITY: VISUAL DESIGN

Having derived the indicators and explanations to interpret
fairness in urban planning, we next describe how we convey
them through visual components of IF-City. Fig. 1 shows the
whole application dashboard. Fig. 5 shows the basic urban
design and Figs 6, 7 and 8 show intelligible fairness features.
Inspired by Qua-Kit [85], we developed IF-City as a web app
with 3D map and colored blocks for buildings.

5.1 Basic Features for Urban Design
Urban (Planning and Population) indicators. Urban plan-
ners track indicators to understand various characteristics
of an urban design. We present these as numbers (e.g., total
population, site area) and with charts to indicate subgroup
information. Planning and population indicators (Fig. 5a)
are presented on the right sidebar of the dashboard (Fig. 1),
and indicate the total floor area of each building function
type and population of each resident type, respectively. The
different preferences of each resident type are also presented
as vertical Preference Charts with colors corresponding
to each function type. Planning and population priority
weights (for equity) can be set with sliders (Appendix A,
Fig. A1). Tooltip label hints are also provided.

3D map view and navigation. Users can examine the
urban design by panning, zooming, and rotating a 3D map
(see Fig. 5b). We use 3D instead of 2D so that users can
view top-down to understand the location context, perceive
building shapes and heights from various angles, and view
at street-level for immersion. We also exploited 3D to vi-
sualize building occupancy in the Benefit Heatmap with
cylinder heights. A satellite view (top of Fig. 1) is also
provided to show the context of the neighborhood. The color
of each building corresponds to its function type.

Editing buildings. Users can edit the design by adding,
changing, or deleting buildings. IF-City supports plan-
ning at the granularity of specifying building footprints,
heights, and function types. This is suitable for neighbor-
hood planning, is more fine-grained than zoning, and more
coarse-grained than specifying building tenants (e.g., retail
or restaurants can occupy commercial spaces). Clicking a
building shows a dialog (Fig. 5c) with floor area, number of
floors, function type, and residential population and accessi-
bility. Mixed building types include Residential, Office and
Commercial functions, and users can set their ratios. Users
can edit the details and press the ”Calculate Benefit” button
to rerun the resident allocation simulation and recalculate
the benefits and inequality indicators; this will change the
population distributions in the building and the wider city.
Users can also draw new buildings or delete existing ones.

5.2 Intelligible Features for Fair Urban Design
IF-City has specialized features to indicate and explain
fairness in urban design. Though central to the contribu-
tions of the paper, to ensure usability, we designed these
features to blend in sensibly with the primary task of the
dashboard, i.e., viewing and designing the city. Therefore,
the benefit and inequality features supplement the basic
urban planning features, rather than taking central focus in
the UI design. We highlight these intelligibility features that
occur across various parts of the dashboard (Figs. 6-8).

Inequality indicators (IF.1). Users can perceive fairness
by the Total Inequality indicator (side panel in Fig. 1).

Inequality attributions (IF.2, IF.3). Users can identify
sources of inequality by Resident Type or Location. Fairness
across resident types can be checked by perceiving whether
levels are flat in the Benefits Chart with small error bars and
whether between- and within-group indices are small in the
Inequality Chart (Fig. 6a). Fairness across locations can be
examined in two ways: 1) by using Highlight Buildings to
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Fig. 6: Intelligible fairness features of IF-City to identify causes of inequality. a) Inequality Attribution by Resident Type:
View benefits of each resident type for the whole city, per block and per building. Benefits by resident type showing group
benefit mean (bars) and standard deviation (error bar) and global mean (horizontal line). Inequality by resident type (red
diamond) calculated as Generalized Entropy Index decomposable into between- (dark red bars) and within-group (pink
bars) inequalities per group. b) Inequality Attribution by Location: Highlight (cyan outline) buildings filtered by occupancy
and average benefit, or view relative benefit of each block and building as a Heatmap (green, red, white for above-, below-,
average, respectively; darker colors for farther from average; colored ground areas for block-level benefits, 3D cylinders for
building-level benefits with height for number of occupants). c) Inequality Trace: trace accessibility for different function
types at each residential building for each resident type.

filter buildings with specific occupancy and average benefit
ranges (Fig. 6b, Left), or 2) viewing the Benefits Heatmap
to see above-average (green) or below-average (red) blocks
and buildings (3D cylinders). (Fig. 6b, Right).

Inequality traces (IF.4). Focusing on a building, users
can trace its source of inequality by clicking it to examine
its Accessibility Circle and its dialog popup (Fig. 6c). Click-
ing on a block will also show similar information as for
buildings. The blue Accessibility Circle shows which nearby
buildings were included to calculate accessibility and utility,
so users may want to edit them to improve inequality. The
building-specific Benefit Chart shows benefit distribution
for occupants within the building. The Accessibility Chart
shows the accessibility for each function type, and has the
option to show preference-weighted accessibility (utility)
for each resident type. For example, in Fig. 6c, Outdoor
Recreationalist residents at the selected building have very
high utility due to the nearby park in the northwest, leading
to above-average benefits compared to other resident types
and contributing to between-group inequality.

Population simulation to allocate residents (IF.5). As an
extension of the editing capabilities of the baseline interface,
recalculating and visualizing the benefits and inequality
indicators support users to understand how design changes
can impact the fairness outcome (Fig. 7a). After editing
buildings and pressing “Calculate Benefit”, the user will see
updates to population, benefit and inequality indicators per
building and for the whole city.

Intelligible fair planning recommendation (IF.6). To let
urban planners know what amenities would be most needed
in which block and to accelerate the design iterations, users
can query for recommendations on which census blocks to
edit, and how much floor area of each building function
type to change (Fig. 7b). The user can then choose how
they want to edit buildings in recommended census blocks.
Users can constrain the recommended changes that can be
proposed, such as locking the benefits of resident types to

remain unchanged, restricting benefits of specific resident
types to only increase or decrease, and limiting the percent-
age change in total floor area. The recommended blocks
are highlighted with thick colored outlines on the map
with corresponding bars in an attribution chart with square
icons of the same outline color. The green attribution bar
chart shows the importance of each block towards reducing
inequality (Eq. 18) and ranks them by decreasing attribution.
On expanding each attribution bar, users can view a table of
recommended floor area change for each function type for
that block. Below the attribution chart, users can see the
expected benefits and inequalities if the recommendation
is followed. After accepting a recommendation, the user
needs to edit the city design and recalculate (population
simulation) to assess the design change.

Design iteration timeline (IF.7). For complex iterative
design tasks, it is important to provide feedback across
iterations for users to assess what is improving, and what
may be traded-off. Fig. 8 shows a Timeline View of saved
designs for users to track and compare planning indicators,
including inequality. Clicking on a specific time point will
load that design in a new browser window, showing the full
dashboard with a map and charts. Using multiple screens,
users can compare between urban designs for the overall
city, per building, location, or per resident type.

6 SYSTEM IMPLEMENTATION

IF-City was developed as an interactive web app with
HTML5 and JavaScript front-end, and Python back-end
with a Flask web server and custom code for the application
logic. The 3D map and navigation interface was built using
the ArcGIS JavaScript API and the charts were implemented
using HighCharts. For the fair planning recommendation
engine, we utilized PyTorch to speed up gradient calcula-
tions and Gurobi as the optimization solver. Resident type
clustering was performed using scikit-learn.
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Fig. 7: Intelligibility fairness features of IF-City to mitigate
inequality. a) Population Simulation to Allocate Residents:
Change urban design by drawing new buildings, deleting
existing ones, or editing them. Building heights and types
can be edited. Residents are reallocated to the new design,
benefits and inequality are recalculated after changes. b)
Planning Recommendation to Mitigate Inequality: Request
recommendation for which blocks to edit and how much
floor area to change for each function type to reduce in-
equality. Estimated benefits and inequalities along with their
attribution towards fairness improvement are shown. Users
can constrain recommendations to specify whether benefits
should increase, decrease, or be fixed for each resident type,
and the percentage of floor areas allowed to be changed.

Fig. 8: Intelligibility fairness feature of IF-City Timeline View
to show changes in indicators across designs. Clicking a
time point opens the saved design for detailed comparison.

7 CASE STUDY: NEIGHBORHOOD RE-PLANNING

7.1 Background and Design Brief
We present a synthetic case study of the neighborhood of
Southern Boulevard (Fig. 9a) in Bronx, New York City, to
redesign it for fairer benefits across diverse resident types.
Southern Boulevard is home to almost 60,000 residents.
Urban planners have identified a number of gaps and
opportunities to improve this neighborhood1. To examine
how re-designing this neighborhood affects the re-allocation
of residents, we simulated a synthetic population based on
the check-in data of 4247 users from Foursquare collected

1. https://www1.nyc.gov/site/planning/plans/southern-
blvd/southern-blvd-updates.page

Fig. 9: Case study information. We used building and plan-
ning data regarding the South Boulevard neighborhood in
the Bronx of New York City (NYC), United States. Building
specifications follow the NYC Department of City Plan-
ning Documentation, and building data is from the PLUTO
dataset [97]. Six resident types with distinct preferences for
different building types were derived from a cluster analysis
of check-in trajectory data of 4247 NYC Foursquare users.

in NYC (technical details in Appendix C). We identified
six resident types, based on their preference for different
building function types: Outdoor Recreationalists, General
Consumers, Culture Consumers, Commercial Consumers,
Office Workers, and Educators & Students (Fig. 9b). We
pose a design brief with a planning goal to decrease the
inequality indicator from 95 to≤60 and increase the average
benefit from 190 to ≥220, while maintaining the population
to within 10% of the original indicator. This planning goal
was also used later in the user study.

7.2 Walkthrough
We demonstrate IF-City with a user flow (Fig. 2) to design
the neighborhood to be fairer. We articulate steps to per-
ceive inequality (Steps 1, 7), identify their causes (2-4), and
mitigate inequality (5-6). Actions are of a hypothetical user2.

Perceive Inequality. The user starts by looking at the
inequality indicator and realizes the current indicator (94.98)
is far from the planning goal (≤ 60) (Step 1). This indicator
later helps the user to compare between design iterations in
the Timeline View (Step 7).

Identify Causes of Inequality. The user then wants
to know who are advantaged and disadvantaged (Step 2:
Attribution by Resident Type). She starts by looking at the
Inequality Chart and finds that Office Workers, General
Consumers and Culture Consumers have negative between-
group inequality (dark red), while Outdoor Recreationists

2. Derived from our user study with real urban planning experts
described in Section 8
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have much higher positive between-group inequality. The
within-group inequalities are relatively small for all resident
types. She then examines the Benefit Chart and realizes that
benefits are not evenly distributed among resident types.
This explains the big variance in between-group inequality.
She notices that Office Workers have negative between-
group inequality (Step 2a) as they have below-average ben-
efits (Step 2b). Next, she looks for the locations of inequality.

Step 3: Attribution by Location. There are two methods to
identify the locations of greatest inequality — highlighting
filtered buildings or viewing the benefits heatmap. Using
the Highlight Building feature (Step 3a), she selects settings
to highlight buildings which have high occupancy (≥80)
of Office Workers with low average benefit (≤160 points).
These buildings are highlighted in cyan on the 3D map.
The user can also review her selections with the Benefits
Heatmap and see that these buildings have tall green cylin-
ders. Alternative to filtering, using the Benefits Heatmap
(Step 3b), the user can perceive the uneven distribution of
benefits across locations, and focus on the blocks with the
lowest benefit (darkest red) and high occupancy to look for
opportunities to add or remove Office spaces.

Step 4: Inequality Trace. For locations with below-average
benefits for Office Workers, she may view their accessibility
circle, change buildings to be used for Office functions,
or add a new one. Conversely, for locations with above-
average benefits, locate Office buildings and decide whether
to delete them or edit their function.

Mitigate Inequality. There are two approaches to mit-
igate inequality — trial-and-error with population simula-
tion (Step 4) or following planning recommendations (Step
5). We describe a use case of editing different building
function types to improve the average benefit from 196.5
and decrease total inequality from 94.98. Having found
an empty land plot in the south, the user draws a new
Mixed building (Step 5) with Office and Commercial floor
areas to help disadvantaged Office Workers and General
Consumers living nearby. After recalculating benefits, the
user can perceive changes to the benefits and inequality
in the respective charts (Step 2) and heatmap (Step 3b). In
the Timeline View (Step 7), the user can track a decrease
in the Inequality Indicator score (iteration 1 to 2). She
continues to make other edits (Step 5). However, after a
few iterations, the decrease plateaus (iteration 4). Next, the
user edits Cultural buildings to help Cultural Consumers,
for example, increasing the height of one to 15 floors. This
decreases Inequality somewhat, and is repeatable for two
more iterations until plateauing again (iteration 5 to 7).

At this stage, the user changes the strategy to use plan-
ning recommendations (Step 6). She requests a recommen-
dation with constraints to not increase benefits to Outdoor
Recreationalists any higher, not decrease benefits to General
Consumers, Cultural Consumers, and Office Workers, and
limit floor area changes to 30%. She is recommended to
edit 9 blocks (4 shown in Fig. 2(6)), ranked in decreasing
attribution to improve fairness. For Block 014, if she adds
23,533m2 and 11,233m2 of Office and Commercial floor
areas, respectively, she could decrease Inequality by 18. Fol-
lowing this recommendation, she draws a Mixed building
at an empty space and achieved a significant decrease in
Inequality (Fig. 2(7), iteration 8). She runs the recommenda-

tion one more time and finishes. Ultimately, she raised the
average benefit to 280.7 and reduce total inequality to 33.13.

Findings: The analysis recommends that to decrease
inequality, the neighborhood needs more (i) office floor area
in the south of the neighborhood; (ii) cultural area in the
mid-west; and (iii) cultural and commercial areas in the
west. We present analysis details in Appendix D.

8 EVALUATING WITH DOMAIN EXPERTS

We conducted a qualitative study with six domain experts
separately to 1) confirm the scope and priority of fairness
in urban planning objectives, and 2) evaluate the usefulness
of IF-City in helping experts to understand the causes of
inequalities and mitigate them. Three experts are urban
planners (E1 and E2 have experience in China, E3 has
experience in Europe) and three are urban designers (E4,
E5 and E6 have experience in the United States). All experts
had 3-10 years of experience.

Lasting two hours, the study procedure included: i) a
short interview where the expert was asked about his own
understanding of and experience with fairness in urban
planning, ii) an introduction to the target neighborhood
Southern Boulevard its planning goals, followed by iii) a
description of our fairness definition, iv) a briefing on two
tasks to identify the causes of inequalities and mitigate
them, and v) a tutorial on using IF-City. With consent, we
recorded audio and screen captured interactions with IF-
City. We analyzed the recordings in terms of using intelli-
gibility within the three stages of the IF-Alloc framework.
We present our findings on the experts’ understanding on
fairness in urban planning, their strategies to complete the
tasks, and the reported usefulness and usability of IF-City.

8.1 Priority and Scope of Fairness in Urban Planning
All experts believed fairness is important. Some (E1, E2, E3
and E6) have previously integrated fairness in their designs
qualitatively, while others (E4 and E5) have quantified fair-
ness in terms of accessibility and walkability to evaluate
existing urban designs. They all agreed that measuring and
visualizing fairness in IF-City made it “easy to compare the
fairness of planning outcomes” [E4], and it was “nice to see
the intermediate effect of fairness after every single change of the
design”[E1]. However, they also argued that fairness is not
the first planning priority; there were “many other important
criteria, such as environmental effect and economic effect” [E1].

Other than equality, the experts also considered equity
as an important aspect of fairness. For example, E6 men-
tioned that “designs should guarantee the benefit of low-income
population, and also the elderly and disabled people”. Regarding
grouping residents into types, all experts would typically
segment the population by demographics rather than activ-
ity preference, but E3 and E5 felt that segmenting by the
latter was useful to inform “what are their [population group]
needs” [E3] and to examine the needs of non-traditional
groups such as outdoor recreationalists and educators.

8.2 Perceiving and Identifying the Inequality Sources
Overall, experts employed common steps to find the sources
of inequality (numbered as in Fig. 2): 1) perceive the inequal-
ity indicator, 2) identify one disadvantaged resident type
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at a time from the Benefit and Inequality Charts, 3) locate
where they live by filtering for buildings with such residents
(3a) and identifying buildings with high occupancy (i.e., tall
cylinders in the benefit heatmaps; 3b), 4) check accessibility
by selecting the building or block and examining the func-
tion type floor area distribution of nearby buildings, 5) edit
building properties (e.g., height, function type) to explore
whether the changes could decrease inequality indicator.
Next, we report how the visual components in IF-City
helped the experts to perform these steps.

Interpreting benefit and inequality charts (IF.2). Most
experts preferred to use the Benefit Chart to identify which
resident type is disadvantaged, as “it is simple and very easy
to understand” [E1]. However, due to positivity bias, they
tended to overlook that advantaged resident types con-
tributed to inequality too. Though somewhat less intuitive
than the Benefit Chart, experts could learn more insights
from the Inequality Chart. E5 found that, in the Benefit
Chart, both Outdoor Recreationalists and Offices Workers
“deviate from the average with the same amount” above and
below mean, respectively; but in the Inequality Chart the
more populous “Recreationalists have the largest between-group
inequality score, so they contribute most to the total inequality”.
Moreover, while the experts could perceive within-group
inequality, they did not investigate their cause further.

Locating disadvantaged resident types (IF.3). Most ex-
perts preferred to use the Benefit Heatmap to locate disad-
vantaged resident types on the map, as they could “quickly
locate the blocks in red color and with high cylinders” [E1].
In contrast, Building Filtering “[took] more time” [E2] and
required more interactions to tune settings for a suitable
selection threshold. Nevertheless, it provided detailed dis-
tributions of benefit and occupancy, allowing experts to
select the buildings based on perceived quantiles.

Identifying causes of inequality due to accessibility
(IF.4). On finding where disadvantaged residents were on
the map, experts further examined the accessibility at the
affected buildings. Most experts only quickly viewed the
blue Accessibility Circle to identify what function types it
encloses; only a few experts studied the Accessibility Chart
to examine the floor area distribution of function types. This
helped them to clearly see how much specific function types
could be added or removed, e.g., E1 pointed out “the bar
chart helps me to compare floor area of different function types
and find out which function type should be added“.

8.3 Mitigating and Verifying Inequality
Here, we describe how experts used two approaches to mit-
igate inequality, and verified improvements while iterating.

Trial and error strategy (IF.5). All experts first chose to
manually improve fairness by editing buildings or blocks
identified as disadvantaged, and running the population
simulation to recalculate the benefit and inequality indica-
tors. Most experts added new Office, Culture and Mixed
buildings to improve the benefit for Office Workers, Culture
Consumers and General Consumers. They tended to add
new buildings than edit existing ones to avoid disrupting
existing activities. The edits were interspersed with study-
ing the Benefit and Inequality Charts to identify which res-
ident types had inequality, their Preference Charts of func-
tion types, and the Benefit Heatmap to see where they lived.

This helped E2 and E4 to retarget their edits. With their
independent effort, four experts (E1, E4, E5, E6) achieved the
planning goal of sufficiently low inequality and high total
benefit, but they took a long time with many edit iterations
to do so. They performed 4 to 14 iterations (M = 7) lasting 30-
90 minutes. Experts E2 and E3 gave up editing further after
only 2 to 3 edits, and only decreased inequality by less than
15 points. We report detailed editing actions and planning
outcomes in Appendix D. To further improve fairness, the
experts subsequently used the planning recommendations.

Finally, enunciating the wicked nature of urban plan-
ning, the experts reported that mitigating inequality was
complex and challenging because improving benefits for
one resident type may hurt others. It would be “tedious to
check which building I can change so that no one’s benefit gets
hurt” [E2]. E6 found that the benefit of General Consumers
“is hard to improve because their preference is multi-fold”, to
include Office, Commercial and Cultural buildings, but
changing them will also affect the benefits to Office Workers,
Commercial Consumers and Culture Consumers.

Planning recommendations (IF.6). After manual at-
tempts to improve fairness, the experts investigated further
improvements with automatic recommendations. Most ex-
perts were conservative and wanted to see the recommen-
dation details to examine whether they were realistic and
feasible. E2, E3, E5 and E6 were interested in how the rec-
ommended edits were automatically calculated. Conversely,
E1 and E4 were initially skeptical and assumed that the
calculations were too simple; they believed that planning
is complicated and many factors should be considered
such as street views and height control. After following
and executing the top few recommendations, all experts
found the recommended edits were feasible and led to
large decreases in the inequality indicator. They “trust[ed] the
recommendations” [E5] and found that the recommendation
table was “very transparent” [E3] as they learned “which block
needs what [to edit]” [E2]. The recommendations helped them
to “narrow down the inequality problems to certain blocks” [E4].
They also appreciated the coarse, block-level recommenda-
tions as they “[had] the freedom to make detailed design within
a block” [E6]. E3 was an exception who wanted the rec-
ommendation “automated into buildings” so that he did not
need to make any edit by himself. Regarding constraining
the recommendations, the experts appreciated the control
of prioritizing resident types, as “sometimes urban planners
need to make sure the benefit of certain resident types should be
improved by some policy” [E3]. They also liked the setting to
threshold the floor area change because they could easily
limit a planning budget. Overall, the experts thought the
planning recommendation feature was “a good guide” [E3]
and wanted to use it rather than solving the inequality
problems by themselves manually.

Verifying and inspecting improvements (IF.7). Most
experts used the Timeline View to check whether the in-
equality indicator improved with each design iteration. E1
liked that he could perceive ”the intermediate effect of fairness
after every single change of the design”. E2 appreciated perceiv-
ing the ”magnitude and scale” of his edits on the inequality
index. This indicates the importance of the comparative use
of What, to contextualize the meaning of the inequality
index that would otherwise be too abstract. Furthermore,
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E1 clicked on her past saved designs and compared details
with the current version. This helped her to understand that
her adding of Office buildings in the south and Commercial
buildings in the middle of the neighborhood had signifi-
cantly improved fairness.

8.4 Feedback on Usability and Usefulness

Usability. All the experts found the Benefit and Inequality
charts, the Heatmap, and the Cylinders easy to understand:
“These features are very helpful to see the inequality situation. I
like this visualization and I think it is very presentable to clients
and stakeholders” [E4]. E6 liked the design of IF-City and felt
it easy to get familiar with it as “this tool is quite intuitive”.
E5 commented that the “information is well organized, and the
concept of fairness is clearly conveyed”, and believed planners
could learn it in a short time. However, she would prefer
less scrolling to see all the charts and tables.

Usefulness. The experts reported IF-City would be use-
ful for “overall high-level land use planning” [E4], “before the
block subdivision process” [E6] and for “[re-evaluating] land
use” [E4]. E4 also commented that having the quantitative
tool is helpful to explicitly articulate fairness as “most of the
time the fairness was discussed in conversation with photos”.
E5 thought IF-City could be integrated with the existing
professional design tools such as Autodesk and Rhino.

9 EVALUATION OF RECOMMENDED MITIGATIONS

We conducted a quantitative study to evaluate how much
our inequality mitigation recommendation Algorithm 1
could improve fairness 1) with different constraints on how
much floor area to change and 2) in comparison to the
performance of the six experts with the trial and error
strategy. We ran the algorithm on the neighborhood (Fig. 9)
with an initial inequality indicator of 94.98. In each run with
a certain floor area change limit, the algorithm returns a list
of census blocks with floor area of each building function
type to change (Fig. 7b). The blocks are sorted by decreasing
Shapley attribution. We manually edited the floor areas
(e.g., adding office space) to follow recommendations for
each block in the sorted order, and measured the inequality
indicators. We also measured the manual edits and resulting
inequality scores for our domain experts from user study.

Fig. 10 shows the inequality indicators resulting from
manual edits by domain experts and automated recom-
mendation by IF-Plan. IF-Plan edits generally resulted in
at least the same or lower inequality scores than human
experts. Our domain experts stopped early with relatively
high inequality scores, while the recommendation system
could iterate more to achieve even lower inequality.

10 DISCUSSION

We have demonstrated the usability and usefulness of intel-
ligibility for fair urban design. Here, we discuss 1) the need
for domain-specific fairness visualizations, 2) the usefulness
of intelligibility in fairness understanding, 3) using IF-City
to analyze fairness for different neighborhoods or cities,
4) generalizing IF-Alloc framework beyond urban planning,
and 5) limitations and future work.
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Fig. 10: Inequality mitigation performances of the 6 human
experts versus Intelligible Fair Planning Recommendation
(IF-Plan). Each black marker with a different shape repre-
sents the lowest inequality achieved by a different human
expert. Colored lines represent iterations by IF-Plan for
different floor area change limit (10%, 30%, and 50%).

Domain-specific fairness visualizations. Unlike data
scientists whose role is to understand and model data,
expert users have domain-specific roles and tasks with
specialized tools and workflows. Regarding domain experts,
we have identified fair allocation as a concern for urban
planners, defined and implemented inequality indicators
and explanations for resident types and locations, designed
visualizations of group fairness, and integrated fairness
visualizations seamlessly into a workflow for urban design.
In our evaluation, users were comfortable using IF-City,
appreciated the need for fairness, and were effective to
reduce inequality. Though important, fairness is not the
primary goal in many applications, so its visualization
needs to be carefully designed and integrated. We drew
from existing urban planning tools to leverage geospatial
visualizations, 3D models, and accessibility calculations to
develop a domain-specific intelligible fairness tool. Other
applications that can benefit from further study include
social network analysis [98] or computer networking [99]
by visualizing graph networks, and fair scheduling [100] by
visualizing timetables.

Intelligibility for fair allocation. We have developed
various intelligibility features to support three stages to
iteratively perceive, understand, and mitigate inequality in
resource allocation. Attribution by Resident Type (IF.2) and
Location (IF.3) to identify the cause of inequality were use-
ful, especially with heatmaps to locate inequality, perhaps
due to the familiarity with maps in urban planning. Provid-
ing both population simulation (IF.5) and planning recom-
mendation (IF.6) to mitigate inequality helps to empower
expert designers to make fine-grained decisions, while sup-
porting efficient suggestions on-demand. This grants control
to domain experts to integrate other concerns or constraints
in their solutions. In our study, experts first explored via
trial-and-error (IF.5), before exploring automatic recommen-
dations. However, for cases where users are not expert
planners (e.g., [7]), it may be better to prioritize recom-
mendations (IF.6). Finally, although contrastive explanations
are key for explainability goals [14], we found limited use
of the design iteration timeline (IF.7). Our experts did use
the timeline to track their progress, but rarely compared
details between past and current designs. Perhaps, due to
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the easily remembering their earlier designs, the tediousness
of examining many buildings between urban plans, and
the brief duration of the experiment session. We expect the
timeline to be more useful in usages spanning hours or days.

Generalizing to analyze fairness for other neighbor-
hoods or cities. The IF-Alloc framework (Fig. 2) can be
directly applied to other cities. Using IF-City, urban planners
can upload the designs of other cities (as Geo-JSON) and
their resident demographic or preference data (JSON) to
assess the fairness of those cities. Moreover, by loading the
dashboard in multiple web browser windows, users can
examine detailed reasons why one city may be fairer than
another. We have evaluated IF-City on a small neighborhood
and note the need to scale the calculations and memory
requirements for much larger cities. Furthermore, while
we focused on fairness, IF-City can be extended to other
objectives, such as green space and economic sustainability.

Generalizing to other fairness applications beyond
urban planning. IF-Alloc can be applied to other fair al-
location applications, such as job allocation for the gig econ-
omy [101], product placement in retail or online stores [102],
worker shift allocation (e.g., in restaurants, hospitals) [103],
and donation division [7]. Following the steps in Fig. 3, we
describe an example application for fair driver job allocation
in ride-sharing applications [104], [105]. 1) Extract map and
road network data to determine routes and distances. 2)
Extract driver background and behavioral information of
drivers from worker surveys, app usage, and driving trajec-
tories (2a) to cluster (2b) them into driver types (2c) based on
their demographics, preferred driving times and locations,
etc. (2d). 3) Simulate a job request scenario (multiple riders’
requests, given multiple drivers) and automatically allocate
jobs [106]. 4) Calculate the benefits (earnings) for each driver
given their job allocation, aggregate benefits across driver
types (4a) and current locations (4b), and calculate group
inequalities using Generalized Entropy (4c). Steps 4a and 4b
support explaining Why about the fairness. 5) Enable job
planners to adjust planning parameters (e.g., commission
fee [107], surge pricing rate [108], incentive threshold [109],
working speed [110]) and run the allocation engine to sim-
ulate What If the parameters were different (5a), or request
recommendations of fairer settings (5b). In general, IF-Alloc
can be applied to applications involving resource or task
allocation, planning parameters, and diverse stakeholders.

Limitation and future work. Since urban planning is
a complex problem, in this work, we simplified the plan-
ning process which may result in some limitations to be
addressed in the future work.
a) More inclusive demographic data. We mined resident pref-

erences from social media which might be biased, as
it excludes residents who are non-users. Our pref-
erence clustering was also based on location visits,
but excluded less tangible activities. Nevertheless, our
activity-based preferences can be complemented with
contemporary approaches that collect demographic-
based preferences from surveys of urban residents.

b) More practical population simulation. We allocated resi-
dents individually in the population simulation, and
neglected modeling families or households that move
together. Future work can perform allocation at the
household level to balance the diverse preferences of

different family members. Also, the residents are allo-
cated by probabilities that are proportional to benefits,
neglecting the dynamic market prices and competition
for space. Future work will integrate more practical
factors, such as resident income and house property
values, ages and types [92], [93].

c) More transport modes for accessibility modeling. We calcu-
lated accessibility based on straight-line distances and
walkability, which is a common approach. Extending
this work to include transportation planning can con-
sider transportation networks (roads, pathways, tracks)
and transportation modes (e.g., cars, bicycles, trains).

d) More local urban planning knowledge. We evaluated with
domain experts who were not US-based planners, focus-
ing on evaluating the method of using IF-City. For actual
urban planning, local planners should be engaged.

Note that the Inequality Score depends on planning
and population priority weights, ρf and ρg . Urban
planners will need to determine these for each city
and population based on their planning goals. Thus,
users of IF-City should not naively use the Inequality
Score as a generic benchmark across cities, but consider
assumptions encoded with the priority weights.

Our formulation of resident types assumes that each
resident belongs to only one type. However, in reality,
the types may overlap, e.g., residents belonging to both
disabled and elderly populations. Future work should
treat resident types as attribute-based rather than cat-
egorically. Population priority weights would have to
be modeled to accommodate this too, e.g., by averaging
across the types that a resident belongs to.

11 CONCLUSION

We have proposed Intelligible Fair City Planner (IF-City) an
interactive visualization tool to support the design of fair
urban plans. In consultation with urban planners, we iden-
tified requirements to perceive fairness, identify causes, and
mitigate inequality. We formalized this the generalizable IF-
Alloc framework for intelligible fair allocation. We further
proposed an intelligible fair planning recommendation (IF-
Plan) method to automatically recommend fairer urban
plans to accelerate design iterations. We demonstrated and
evaluated the usage and usefulness of IF-City in a real
neighborhood in New York City, US, with practicing urban
planners and urban designers. Using various intelligibility
features, urban planners could perceive and identify causes
of inequality, and mitigate inequality. This works sheds light
on how to carefully design detailed user interactions for fair
design in collaborative human-AI planning.
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